

Gateway to the Earth

Recent SLR tracking improvements at SGF Herstmonceux

G.Appleby, C.Potter, J.Rodríguez, R.Sherwood, V.Smith, T.Shoobridge, M.Wilkinson

Daytime GNSS tracking difficulties

- Intrinsic weak returns
- High noise rate
- Decreased transmission due to filters
- No nighttime camera
- Pointing
- Turbulence

Station parameter that captures (crudely) tracking capabilities:

- = primary radius (m)
- = average laser power (W)
- =2-way transmission for 30° slant range and clear conditions

- Stations significantly above or below the line indicate over- and under-performance relative to the expected values
- Reasons for this include scheduling priority differences

Past upgrades at SGF

- Dichroic mirror change
- Coude path optics
- Emitter optics (partial)
- Laser upgrade (0.4mJ@2KHz to 1.1mJ@1KHz)

Past upgrades at SGF

- Dichroic mirror change
- Coude path optics
- Emitter optics (partial)
- Laser upgrade (0.4mJ@2KHz to 1.1mJ@1KHz)

lacktriangle

http://sgf.rgo.ac.uk/operations/laserenergy.html

Testing daytime filter transmission

Abysmal performance: ~12.5 % transmission

Better alternatives available?

www.alluxa.com (Ultra-narrow bandpass filters)

- Extremely good on paper: high transmission, wide band blocking included
- Laser linewidth an issue?
- Manufacturer says: wait for measurement

- Dual blocking filter setup (~95% transmission each)
- Actual improvement much higher than expected: old filter underperforming (19-39% transmission)
- Current narrow filter underperforming, barely within spec (~33%)

Evidence for improved signal after filter change

Evidence for improved signal after filter change

Noise...

Noise...

- Noise rate varies greatly with azimuth, elevation, atmospheric conditions and Sun position
- Doubling of noise rates at low elevations typical
- 1-4MHz noise rates fairly common with our setup
- Worse case scenario (really) much worse

•

Noise mitigation: temporal and spatial filtering

Worth ensuring optimal operation, especially for weak targets

Beware of arbitrary small range gates...

- Found 3 mm error with range gates below ~60 ns
- Must characterise your detector

GLONASS-K1

123 items

Pulse duration = 50 ps

Angle of incidence	$\theta = 0^{\circ}$	$\theta = 5^{\circ}$	$\theta = 10^{\circ}$	$\theta = 15^{\circ}$
RMS of a sing. measur.	6 mm	18 mm	34 mm	51 mm

"GLONASS retroreflector systems", Victor Shargorodsky, May 2014:

http://ilrs.gsfc.nasa.gov/docs/2014/glonassretros_shargorodsky_20140501.pdf

Single pass Glonass-134: target signature

Tracking at higher incidence angles (low elevation) increases the apparent size of LRA resulting in shallower signal return distributions.

Single pass Glonass-134: target signature

Tracking at higher incidence angles (low elevation) increases the apparent size of LRA resulting in shallower signal return distributions.

At low elevation:

- higher air-mass
- longer distance
- higher noise
- shallower distribution

Single pass Glonass-134: target signature

Tracking at higher incidence angles (low elevation) increases the apparent size of LRA resulting in shallower signal return distributions.

Productivity gains?

Coated vs uncoated GNSS tracking

Group A: coated GLONASS Group B: uncoated GLONASS

21.8%

25.6%

Low priority vs high priority GNSS tracking

Group A: uncoated GLONASS, low-priority

Group B: GLONASS 123, 125, 128, 129, 133, 134, GALILEO 101-4, COMPASS-M3

Conclusions

- Unexpected performance gains may be hiding in your system (suspect everything)
- Best operational practice will help with most challenging targets
- System optimisation increases productivity without sacrificing coverage (there is spare capacity to be exploited)
- Accuracy issues at low elevation: single-photon SLR tracking of GNSS targets ensures centroid of NP distribution refers to nominal LRA offset
- Priority scheduling can make a difference to tracking density of selected S/C

•

Thank you

